series ⟹2a2−1a,4a−3a,6a2−5a,........nterms
=2a−1a,2(2a)−1+2a,3(2a)−1+2(2)a,........nterms
T1=2a−1a
T2=2(2a)−(1+2)a
T3=3(2a)−1+2(2)a
T4=4(2a)−1+2(3)a
∴Tn=n(2a)−1+2(n−1)a
Tn=2an−(2n−1)a
∑Tn=2a∑n−1a∑(2n−1)
=2an(n+1)2−1a×2n(n+1)2+1a(n)
=an(n+1)−n(n+1)a+[na]=a2n(n+1)−n(n+1)+na
=a2n(n+1)−n2a=n2[a2−1]+a2na