Find the sum of n terms of the series 11+12+14+22+22+24+33+32+34+.....
Sn=11+12+14+22+22+24+33+32+34+.....
Let an=nn+n2+n4=nn4+2n2+1−n2=n(n2+1)2−n2=n(n2+1−n)(n2+1−n)
2an=n(n2+1−n)(n2+1+n)=1n2−n+1−1n2+n+1
2a1=112−1+1−112+1+1=11−13
2a2=122−2+1−122+2+1=13−17
...
...
..
2an=1n2−n+1−1n2+n+1
Adding all the above we get
2Sn=1−1n2+n+1=n2+nn2+n+1
Sn=n2+n2(n2+n+1)