Assuming n4+6n3+5n2=A+Bn+Cn(n+1)+Dn(n+1)(n+2)+En(n+1)(n+2)(n+3)
Equating the coefficient of the like powers on n, we get
A=0,B=0,C=−6,D=0,E=1
∴Tn=n4+6n3+5n2=n(n+1)(n+2)(n+3)−6n(n+1)=15n(n+1)(n+2)(n+3){(n+4)−(n−1)}−2n(n+1){(n+2)−(n−1)}
∴Tn=n4+6n3+5n2=n(n+1)(n+2)(n+3)−6n(n+1)=15[n(n+1)(n+2)(n+3)(n+4)−(n−1)n(n+1)(n+2)(n+3)]−2[n(n+1)(n+2)−(n−1)n(n+1)(n+2)]
T1=15[1⋅2⋅3⋅4⋅5−0]−2[1⋅2⋅3−0]
T2=15[2⋅3⋅4⋅5⋅6−1⋅2⋅3⋅4⋅5]−2[2⋅3⋅4−1⋅2⋅3]
T3=15[3⋅4⋅5⋅6⋅7−2⋅3⋅4⋅5⋅6]−2[3⋅4⋅5−2⋅3⋅4]
…………
…………
Tn=15[n(n+1)(n+2)(n+3)(n+4)−(n−1)n(n+1)(n+2)(n+3)]−2[n(n+1)(n+2)−(n−1)n(n+1)(n+2)]
Sn=T1+T2+T3+……+Tn=15n(n+1)(n+2)(n+3)(n+4)−2n(n+1)(n+2)
Sn=15n(n+1)(n+2)(n2+7n+2)