The general term is given by,
Tn=3(4n+2n2)−4n3
=3×4n+6n2−4n3
Now, ΣTn=3Σ4n+6Σn2−4Σn3 ------------ (1)
Now, sum of n terms of G.P.
Sn=a(rn−1)r−1 ------------ (2)
Σn2=n(n+1)(2n+1)6 ------------ (3)
Σn3=n2(n+1)24 ------------- (4)
Using (2),(3) and (4) in equation (1),
ΣTn=3×4(4n−1)4−1+6×n(n+1)(2n+1)6−4×n2(n+1)24
=4(4n−1)+n(n+1)(2n+1)+n2(n+1)2
=4n+1−4+2n3+3n2+n+n4+2n3+n2
ΣTn=n4+4n3+4n2+n−4+4n+1