={1+(n−1)×1}×{2+(n−1)×1}×{5+(n−1)×1}
=n(n+1)(n+4)
=(n2+n)(n+4)
=n3+4n2+n2+4n
Tn=n3+5n2+4n ⋯(1)
Now, let Sn ne the sum of n terms of the given series
We have:
Sn=∑Tn
=∑(n3+5n2+4n) [Using equation (1)]
=∑n3+5∑n2+4∑n
=n2(n+1)24+5n(n+1)(2n+1)6+4n(n+1)2
=n(n+1){n(n+1)4+56(2n+1)+2}
=n(n+1){3n(n+1)+2×5(2n+1)+2×1212}
=n(n+1){3n2+3n+20n+10+2412}
=n12(n+1)(3n2+23n+34)
∴ Sum of series Sn=n12(n+1)(3n2+23n+34)