We have, (1+2x)6(1−x)7=[6C0+6C1(2x)+6C2(2x)2+6C3(2x)3+6C4(2x)4+6C5(2x)5+6C6(2x)6](7C0−7C1x+7C2x2−7C3x3+7C4x4−7C5x5+7C6x6−7C7x7)
=(1+12x+60x2+160x3+240x4+192x5+64x6)(1−7x+21x2−35x3+35x4−21x5+7x6−x7)
∴ The coeffiecient of x5 in the product
=1×(−1)+12×35+60×(−35)+160×21+240×(−7)+192×1
=−21+420−2100+3360−1680+192=171
and the coefficient of x7 in the product
=1×(−1)+12×7+60×(−21)+160×35+240×(−35)+192×21+64×(−7)
=−1+84−1260+5600−8400+4032−448
=−393
∴ Sum of the coefficient of x5 and x7=171−393=−222
or
We have (1+x)2n, here the power of expansion 2n is even.
∴ Middle term is T2n2+1=Tn+1
Hence, the middle term, Tn+1=2nCnxn
=2n!n!n!xn=1.2.3.4...(2n−3)(2n−2)(2n−1)(2n)n!n!xn
=[1.3.5...(2n−3)(2n−1)2.4.6...(2n−2)2n]xnn!n!
=1.3.5...(2n−3)(2n−1)2n1.2.3...n.xnn!n!
=1.3.5...(2n−3)2n(2n−1)n!xnn!n!
=1.3.5...(2n−3)(2n−1).2n.xnn! Hence proved.