Find the sum of the cubes of the first n natural numbers.
[n(n+1)2]2
We know that,
r4−(r−1)4=4r3−6r2+4r−1
Taking summation on both sides, then
∑nr=1[r4−(r−1)4]=4∑nr=1r3−6∑nr=1r2+4∑nr=1r−∑nr=11
n4−04=4∑n3−6∑n2+4∑r−n
Substituting values of ∑n2 and ∑n in the above equation, we get
n4=4∑n3−6n(n+1)(2n+1)6+4n(n+1)6−n
4∑n3=n4+1(n+1)(2n+1)−2n(n+1)+n
=n[n3+(n+1)(2n+1)−2(n+1)+1]
=n(n3+2n2+n)=n2(n+1)2
4∑n3=n2(n+1)24=[n(n+1)2]2