Find the sum of the digits of the value of y(log4) if y2−7y1+12y=0,y(0)=2,y1(0)=7.
Open in App
Solution
The given equation can be written as (dydx−3)(dydx−4y)=0(i) If dydx−4y=u then (i) reduces to dudx−3u=0 ⇒duu=3dx⇒u=C1e3x. Therefore, we have dydx−4y=C1e3x which is a linear equation whose I.F. is e−4x. So ddx(ye−4x)=C1e−x⇒ye−4x=−C1e−x+C2 ⇒y=C1e3x+C2e4x So 2=y(0)=C1+C2.y1(0)=3C1+4C2=7⇒C1=C2=1. Hence y=e3x+e4x. Thus y(log4)=43+44=320.
Therefore the sum of the digits of the value of y is 3+2+0=5