Find the sum of the first n terms of the series:
3 + 7 + 13 + 21 + 31 + ...
Let an be the nth term of given series and Sn be the sum of n-terms of the given series.
∴Sn=3+7+13+21+31+……+an−1+an……(1)
Also =3+7+13+21+……+an−2+an−1+an……(2)
Subtracting (2) from (1),
0=3+(4+6+8+10+……upto (n-1) terms)−an
⇒an=3+n−12[2×4+(n−2)×2]
⇒an=3+n−12[8+2n−4])
⇒an=3+(n−1)(n+2)
⇒an=3+n2+n−2
⇒an=n2+n+1
∴Sn=∑kn=1ak=Sn=∑kn=1[k2+k+1]
=(12+1+1)+(22+2+1)+(32+3+1)+……+(n2+n+1)
=(12+22+32+……+n2)+(1+2+3+……+n)+n
=n(n+1)(2n+1)6+n(n+1)2+n
=n[2n2+3n+1+3n+3+66]
=n[2n2+6n+106]
=n3[n2+3n+5]