Step 1: Finding nth term of given series
The given series is 3+7+13+21+31+...
S=3+7+13+21+31+....+an−1+an
S=3+7+13+21+...+an−2+an−1+an
On subtracting both the equations, we get
S−S =[3+(7+13+21+31+...+an−1+an)]
−[(3+7+13+21+31+...+an−1)+an]
S−S
=3+[(7−3)+(13−7)+(21−13)+...+(an−an−1)]−an
0=3+[4+6+8+...(n−1)terms]−an
an=3+[4+6+8+...(n−1)terms]
⇒an=3+(n−12)[2×4+(n−1−1)2]
⇒an=3+(n−12)[8+(n−2)2]
⇒an=3+(n−1)(n+2)
⇒an=3+(n2+n−2)
⇒an=n2+n+1
Step 2 : Finding sum of given series
Sn=∑nn=1an=∑nn=1(n2+n+1)
∑nn=1an=∑nn=1n2+∑nn=1n+∑nn=11
∑nn=1an=n(n+1)(2n+1)6+n(n+1)2+n
∑nn=1an=n[(n+1)(2n+1)+3(n+1)+66]
∑nn=1an=n[2n2+n+2n+1+3n+3+66]
∑nn=1an=n[2n2+6n+106]
∑nn=1an=2n[n2+3n+56]
Sn=∑nn=1an=n3[n2+3n+5]