Find the sum of the following geometric progressions :
(i) 2, 6, 18, ..... to 7 terms
(ii) 1, 3, 9, 27, .... to 8 terms
(iii) 1,−12,14,−18,....
(iv) (a2−b2),(a−b),(a−ba+b),..... to n terms
(v) 4, 2, 1, 12.... to 10 terms.
2, 6, 18, ..... to 7 terms
a=2,r=62=3,n=7
Sn=a(rn−1)r−1
S7=2(37−1)3−1=22(37−1)
=2187−1=2186
(ii) 1, 3, 9, 27, ..... to 8 terms
(a=1,r=31=3,n=8)
Sn=a(rn−1)r−1
S8=1(38−1)3−1=3280
(iii) 1,−12,14,−18,.....9 terms
a=1,r=−121=−12,n=9
Sn=a(rn−1)r−1
S9=1(−12)9−1−12−1
=−1512−1−12−1=−1−512512−1−22
=−513512×2−3=171256
(iv) (a2−b2),(a−b),(a−ba+b),.... to n terms
a=a2−b2,r=a−ba2−b2=1a+b,n=n
Sn=a(1−rn)1−r [∴r<1]
Sn=(a2−b2)(1−1(a+b)n)1−1a+b
=(a2−b2)⎛⎜⎝((a+b)n−1(a+b))(a+b)−1a+b⎞⎟⎠Sn=(a+b)(a−b)(a+b)n−1((a+b)n−1(a+b)−1)=(a−b)(a+b)n−2((a+b)n−1(a+b)−1)
(v) 4,2,1,12.....10 terms.
a=4,r=24=12,n=10
Sn=a(1−rn)1−r
=44−(12)101−12
=8(1−1210)=8(1−11024)=1023128