Find the sum of the following geometric progressions :
(i) 2, 6, 18, ..... to 7 terms
(ii) 1, 3, 9, 27, .... to 8 terms
(iii) 1,−12,14,−18,....
(iv) (a2−b2),(a−b),(a−ba+b),..... to n terms
(v) 4, 2, 1, 12.... to 10 terms.
Find the sum of the following geometric series :
(i) 0.15 + 0.015 + 0.0015 + ..... to 8 terms ;
(ii) √2+1√2+12√2+..... to 8 terms ;
(iii) 29−13+12−34+..... to 5 terms.
(iv) (x+y)+(x2+xy+y2)+(x3+x2y+xy+y3)+.... to n terms ;
(v) 35+452+353+454+..... to 2n terms ;
(vi) a1+i+a(1+i)2+a(1+i)3+....+a(1+i)n
(vii) 1,−a,a2,−a3,........ to n terms (a≠1)
(viii) x3,x5,x7,.... to n terms
(ix) √7,√21,3√7,.... to n terms
Find the sum to indicated number of terms in each of the geometric progressions in Exercise 7 to 10: