Find the sum of the following geometric series :
(i) 0.15 + 0.015 + 0.0015 + ..... to 8 terms ;
(ii) √2+1√2+12√2+..... to 8 terms ;
(iii) 29−13+12−34+..... to 5 terms.
(iv) (x+y)+(x2+xy+y2)+(x3+x2y+xy+y3)+.... to n terms ;
(v) 35+452+353+454+..... to 2n terms ;
(vi) a1+i+a(1+i)2+a(1+i)3+....+a(1+i)n
(vii) 1,−a,a2,−a3,........ to n terms (a≠1)
(viii) x3,x5,x7,.... to n terms
(ix) √7,√21,3√7,.... to n terms
(i) 0.15 + 0.015 + 0.0015 + .... upto 8 terms
Here, a = 0.15 and r=a2a1=0.0150.15=110.
S8=a(1−r81−r)
=0.15⎛⎝1−(110)81−110⎞⎠=0.15(1−1108110)=16(1−1108)
(ii) √2+1√2+12√2+.... to 8 terms ;
Here the first term of the series is a=√2 and the common ratio is r=1√2√2=12
Thus the sum of the G.P. up to 8th terms is :
S8=a(1−r8)1−r=√2(1−(12)8)1−12
=2√2(1−1256)=255√2128
(iii) 29−13+12−34+.... to 5 terms.
a=29,r=−1329=−13×92=−32,n=5
S5=(1−r5)1−r
=29(1−(−32)5)1−(−32)
=29(1+24332)1+32
=29(275)32×25=5572
(iv)
(x+y)+(x2+xy+y3)+(x3+x2y+xy2+y3)+.....
=1x−y{(x2−y2)+(x3−y3)+...to ∞}..........
[∵xn−ynx−y=xn−1+xn−2y+...+yn−1]
=1x−y{(x2+x3+....to ∞)−(y2+y3+....to ∞)}
=1x−y{x21−x−y21−y}
=1x−y{x2−x2y−y2+xy2(1−x)(1−y)}
=x+y−xy(1−x)(1−y)
(v) 35+452+353+454+.... to 2n terms ;
The series can be written as :
3(15+153+155+....n terms)+4(152+154+156+....n terms)
For the first part a=15 and the common ratio r=152=125
Thus the sum is :
3(15+153+155+...n terms)=315(1−(125)n)1−125
=58(1−152n)
For the second part a=125 and common ratio
r=125 then
4(152+154+156+.....n terms)=4.125(1−(125)n)1−125=16(1−152n)
Thus the sum is :
35+452+352+....2n terms
=58(1−152n)+16(1−152n)
=58+16(1−152n)
=15+424(1−152n)
=1924(1−152n)
(vi) a1+i+a(1+i)2+a(1+i)3+....+a(1+i)n
a=a1+i, r=a(1+i)2a1+i=11+iSn=a(1−rn)1−r=a1+i(1−(11+i)n)1−11+i=a1+i×1+i(−i)(1−(1+i)n)=−ai(1−(1+i)−n)
(vii) 1,−a,a2,−a3,.... to n terms (a≠1) Rewriting the sequence and sum we get, Sum=1−a+a2−a3+a4−a5+....
Here, r = - a and first term = 1
Sum=[1−(−a)n]1+a
(viii) x3,x5,x7,..... to n terms
Here the first term of the G.P, is a = x3
and the common ratio is r=x5x3=x2
Thus the sum of the G.P. is
x3+x5+x7+.... to n terms
=x3((x2)n−1)x2−1=x2n−1x2−1
(ix) √7,√21,3√7,.... to n terms
Here the first term of the G.P. is a = √7
(ix) √7,√21,3√7,.... to terms
Here the first term of the G.P. is a = √7
and the common ratio is r=√21√7=√3
Thus the sum of the G.P. is :
√7+√21+3√7+.... to n terms
=√7((√3)n−1)√3−1=√7(3n2−1)√3−1