Let Sn=(x+y)+(x2+xy+y2)+(x3+x2y+xy2+y3)+⋯n terms;
Multiply and divide with (x-y) then we obtain
Sn=(x−y)[(x+y)+(x2+xy+y2)+(x3+x2y+xy2+y3)+⋯ n terms(x−y)
Sn=[(x−y)(x+y)+(x−y)(x2+xy+y2)+(x−y)(x3+x2y+xy2+y3)+⋯n terms](x−y)
Sn=[(x2−y2)+(x3−y3)+(x4−y4)+⋯n terms](x−y)
Sn=(x2+x3+x4+⋯n terms)−y2+y3+y4⋯n terms(x−y)
Sn=[x2(1+x+x2+⋯nterms)−y2(1+y+y2+⋯n terms)](x−y)
Sn=⎡⎢⎣{x2(1−xn)1−x}−{y2(1−yn)(1−y)}(x−y)⎤⎥⎦