wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of the following series:
(i) 2 + 5 + 8 + .... + 182
(ii) 101 + 99 + 97 + .... + 47
(iii) (ab)2+(a2+b2)+(a+b)2++[(a+b)2+6ab]

Open in App
Solution

(i) 2 + 5 + 8 + .... + 182
an term of given A.P. is 182
an=a+(n1)d=182182=2+(n1)3182=3n13n=183n=61
Then,
Sn=n2[a+l]=612[2+182]=61×92=5612

(ii) 101 + 99 + 97 + .... + 47
an term of A.P. of n terms is 47.
47=a+(n1)d47=101+(n1)(2)1012n+2=472n2=54
Or n = 28
Then,
Sn=n2[a+l]=282[101+47]=14×148=2072

(iii) (ab)2+(a2+b2)+(ab)2++[(a+b)2+6ab]
Here, the series is an A.P. where we have the following:
a=(ab)2d=(a2+b2(ab)2)=2aban=[(a+b)2+6ab](ab)2+(n1)(2ab)=[(a+b)2+6ab]a2+b22ab+2abn2ab=[a2+b2+2ab+6ab]a2+b24ab+2abn=a2+b2+8ab2abn=12abn=6Sn=n2[2a+(n1)d]S6=62[2(ab)2+(61)2ab]=3[2(a2+b22ab)+10ab]=3[2a2+2b24ab+10ab]=3[2a2+2b2+6ab]=6[a2+b2+3ab]


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon