Find the sum of the following series:
(i) 2 + 5 + 8 + .... + 182
(ii) 101 + 99 + 97 + .... + 47
(iii) (a−b)2+(a2+b2)+(a+b)2+……+[(a+b)2+6ab]
(i) 2 + 5 + 8 + .... + 182
an term of given A.P. is 182
an=a+(n−1)d=182⇒182=2+(n−1)3⇒182=3n−1⇒3n=183⇒n=61
Then,
Sn=n2[a+l]=612[2+182]=61×92=5612
(ii) 101 + 99 + 97 + .... + 47
an term of A.P. of n terms is 47.
∴47=a+(n−1)d47=101+(n−1)(−2)⇒101−2n+2=47⇒2n−2=54
Or n = 28
Then,
Sn=n2[a+l]=282[101+47]=14×148=2072
(iii) (a−b)2+(a2+b2)+(a−b)2+……+[(a+b)2+6ab]
Here, the series is an A.P. where we have the following:
a=(a−b)2d=(a2+b2−(a−b)2)=2aban=[(a+b)2+6ab]⇒(a−b)2+(n−1)(2ab)=[(a+b)2+6ab]⇒a2+b2−2ab+2abn−2ab=[a2+b2+2ab+6ab]⇒a2+b2−4ab+2abn=a2+b2+8ab⇒2abn=12ab⇒n=6Sn=n2[2a+(n−1)d]⇒S6=62[2(a−b)2+(6−1)2ab]=3[2(a2+b2−2ab)+10ab]=3[2a2+2b2−4ab+10ab]=3[2a2+2b2+6ab]=6[a2+b2+3ab]