(i) We have 26+27+28+....+60=(1+2+3+....+60)−(1+2+3+....+25)
=60∑1n−25∑1n
=60(60+1)2−25(25+1)2
=30×61)−(25×13)=1830−325=1505.
(ii) Here, n=25
∴1+3+5+.... to 25 terms=252(n∑k=1(2k−1)=n2)
=625.
(iii) 31+33+....+53
=(1+3+5+....+53)−(1+3+5+....+29)
=(53+12)2−(29+12)2(1+3+5+....+l=(l+12)2)
=272−152=504.