wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of the following series:
(i) 5 + 55 + 555 + ... to n terms;
(ii) 7 + 77 + 777 + ... to n terms;
(iii) 9 + 99 + 999 + ... to n terms;
(iv) 0.5 + 0.55 + 0.555 + ... to n terms.
(v) 0.6 + 0.66 + 0.666 + .... to n terms

Open in App
Solution

(i) We have,
5 + 55 + 555+ ... n terms
Taking 5 as common:
Sn = 5[1 + 11 + 111 + ... n terms]
= 599+99+999+ ... n terms= 5910-1+102-1+103-1+ ... +10n-1= 5910+102+103+ ... +10n - 1+1+1+1+ ... n times= 5910 × 10n-110-1 - n = 59 10910n-1 - n= 58110n+1-9n-10

(ii) We have,
7 + 77 + 777 + ... n terms
Sn= 7 [1 + 11 + 111 + ... n terms]
= 799+99+999+ ... n terms= 7910-1+102-1+103-1+ ... +10n-1= 7910+102+103+ ... +10n - 1+1+1+1 ... n times= 7910 × 10n-110-1 - n = 79 10910n-1 - n= 78110n+1-9n-10

(iii) We have,
9 + 99 + 999 + ... n terms
= 9+99+999+ ... + to n terms= 10-1+102-1+103-1+ ... +10n-1= 10+102+103+ ... +10n - 1+1+1+1 ... n times= 10 × 10n-110-1 - n = 10910n-1 - n= 1910n+1-9n-10

(iv) We have,
0.5 + 0.55 + 0.555 + ... n terms
Sn= 5 [0.1 + 0.11+0.111 + ... n terms]
= 590.9+0.99+0.999+ ... + to n terms= 59910+9100+91000+ ... n terms= 591-110+1-1100+1-11000+ ... n terms = 59n-110+1102+1103+ ... n terms = 59n-1101-110n1-110= 59n-191-110n

(v) We have,
0.6 + 0.66 +.666 + ... to n terms
Sn= 6 [0.1 + 0.11+ 0.111 + ... n terms]
= 690.9+0.99+0.999+ ... n terms= 69910+9100+91000+ ... n terms= 691-110+1-1100+1-11000+ ... n terms = 69n-110+1102+1103+ ... n terms = 69n-1101-110n1-110= 69n-191-110n


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon