The correct options are
A tan−1 2n − tan−1 1
D tan−1 2n − π4
tan−113+tan−129+tan−1433+.....+tan−12n−11+22n−1= n∑ r=1tan−1 (2r−11+22r−1)= n∑ r=1tan−1 (2r − 2r−11+2r. 2r−1) (∵2r − 2r−1 = 2r−1 ]We know thattan−1x − tan−1y = tan−1(x − y1+ x.y)Therefore, tan−113+tan−129+tan−1433+.....+tan−12n−11+22n−1= n∑ r=1(tan−1 2r − tan−1 2r−1)=(tan−12 − tan−1 1) + (tan−122 − tan−12) + ...+ (tan−1 2n − tan−1 2n−1)= tan−1 2n − tan−1 1= tan−1 2n − π4