Find the sum of the following series to infinity :
(i) 1−13+132−133+134+....∞
(ii) 8+4√2+4+....∞
(iii) 25+352+253+354+.....∞.
(iv) 10 - 9 + 8.1 - 7.29 + ...... ∞
(v) 13+152+133+154+135+156+.....∞
(i) S∞=1−13+132−133+.....
⇒a=1, r=−13
S∞=a1−r=11+13
S∞=34.
(ii) S∞=8+4√2+4+....
⇒a=8, r=−44√2=1√2
S∞=a1−r=81−1√2
=8√2√2−1×(√2+1)(√2+1)
=8(2+√2)2−1
S∞=8(2+√2)
(iii) S∞=25+252+253+254+........
=(25+353+...)+(352+354+....)S∞=S′∞+S"∞ForS′∞=a1−r=251−125=25×2524=1024S′∞=512S"∞=3251−125=325×2524=324S∞=S′∞+S"∞=1024+324+1324
(iv) This infinite G.P. has first term a = 10 and common ratio = - 910=−0.9
Thus the sum of the infinite G.P. will be :
10−9+8.9−7.29+....∞a1−r[Since |r|<1]
=101−(−0.9)
=101.9=10019
(v) 13+152+133+154+135+156+....∞
The G.P. can be written as follows :
13+152+133+154+135+156+.....∞
=(13+133+135+....∞)+(152+154+156+....∞)=131−132+1521−152=38+124=1024=512