wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of the following series to infinity :

(i) 113+132133+134+....

(ii) 8+42+4+....

(iii) 25+352+253+354+......

(iv) 10 - 9 + 8.1 - 7.29 + ......

(v) 13+152+133+154+135+156+.....


    Open in App
    Solution

    (i) S=113+132133+.....

    a=1, r=13

    S=a1r=11+13

    S=34.

    (ii) S=8+42+4+....

    a=8, r=442=12

    S=a1r=8112

    =8221×(2+1)(2+1)

    =8(2+2)21

    S=8(2+2)

    (iii) S=25+252+253+254+........

    =(25+353+...)+(352+354+....)S=S+S"ForS=a1r=251125=25×2524=1024S=512S"=3251125=325×2524=324S=S+S"=1024+324+1324

    (iv) This infinite G.P. has first term a = 10 and common ratio = - 910=0.9

    Thus the sum of the infinite G.P. will be :

    109+8.97.29+....a1r[Since |r|<1]

    =101(0.9)

    =101.9=10019

    (v) 13+152+133+154+135+156+....

    The G.P. can be written as follows :

    13+152+133+154+135+156+.....

    =(13+133+135+....)+(152+154+156+....)=131132+1521152=38+124=1024=512


    flag
    Suggest Corrections
    thumbs-up
    6
    Join BYJU'S Learning Program
    similar_icon
    Related Videos
    thumbnail
    lock
    Geometric Progression
    MATHEMATICS
    Watch in App
    Join BYJU'S Learning Program
    CrossIcon