13+33+53+73+....Let Tn be the nth term of this series then,Tn=[1+(n−1)2]3=(2n−1)3=(2n)3−3(2n)2.1+3.12.2n−13=8n3−12n2+6n−1[∵(a−b)3=a3−3a2b+3ab2−b3]=∑nk−1Tk=∑nk−1(8k3−12k2+6k−1)=8∑nk−1k3−12∑nk−1k2+6∑nk−1k−∑nk−11=8[n(n+1)22]−12[n(n+1)(2n+1)6]+6[n(n+1)2]−n=8n2(n+1)24−12[n(n+1)(2n+1)]6+3[n(n+1)]−n=2n2(n+1)2−2n(n+1)(2n+1)+3(n+1)n−n=n(n+1)[2n2(n+1)−2n(2n+1)+3n]−n=(n+1)[2n3+2n2−4n2−2n+3n]−n=(n+1)[2n3−2n2+n]−n=2n4−2n3+n2+2n3−2n2+n−n=2n4−n2=n2(2n2−1)∴13+33+53+73+.... to n terms =n2(2n2−1)