wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of the following series to n terms: 131+13+231+3+13+23+331+3+5+

Open in App
Solution

131+13+231+3+13+23+331+3+5+...
tn=13+23+33+...+n31+3+5+...+(2n1)
13+23+33+...+n3=n2(n+1)24
1+3+5+...+(2n1)=n2
tn=n2(n+1)24n2=(n+1)24
Sn=ni=1(i+1)24=14ni=1i2+2i+1
=14ni=1i2+14ni=12i+14ni=11
=14.n(n+1)(2n+1)6+14.2.n(n+1)2+n4
=n(n+1)4[2n+16+1]+n4
=n(n+1)(2n+7)+6n24
=n[(n+1)(2n+7)+6]24
=n[2n2+9n+13]24=n(2n2+9n+13)24

1184646_1246922_ans_df4e0c7f30a04690b5ecc06afa802c00.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon