Find the sum of the following series up to n terms:
(i) 5 + 55 + 555 + .....
(ii) .6 + .66 + .666 + .....
(i) Let Sn=5+55+555+……upto n terms
=5[1+11+111+……upto n terms]
=59[9+99+999+…upto n terms]
=59[(10−1)+(102−1)+(103−1)+……upto n terms]
=59[10(10n−1)10−1−n]
=59[109(10n−1)−n]
=5081(10n−1)−59n
(ii) Let Sn=.6+.66+.666+……upto n terms
=6[.1+.11+.111+…upto n terms]
=69[.9+.99+.999+…upto n terms]
=23[910+99100+9991000+…upto n terms]
=23[(1−110)+(1−1102)+(1−1103)+…upto n terms]
=23[n−(110+1102+1103+…upto n terms)]
=23[n−{110(1−110n)1−110}]
=23[n−19(1−110n)]⇒[2n3−227(1−110n)]