Find the sum of the following series upto n terms :
131+13+231+3+13+23+331+3+5+……
The given series, is:
131+13+231+3+13+23+331+3+5+……upto n terms
Let an be the nth term of given series and Sn be the sum of the n terms of the given series.
∴an=13+23+33+……+n31+3+5+……+(2n−1)
=[n(n+1)22]n2[1+2n−1]=(n+1)24
=14[n2+2n+1]
∴Sn=∑nk=1ak=∑nk=114(k2+2k+1)
=14[12+2.1+1]+14[22+2.2+1]+……+14[n2+2n+1]
=14[n(n+1)(2n+1)6+2n(n+1)2+n]
=n4[2n2+3n+1+6n+6+66]
=n24[2n2+9n+13]