Find the sum of the infinite series 1+1|2–+1|4–+1|6–+...
Open in App
Solution
ex=1+x+1|2–x2+1|3–x3+1|4–x4+...;
put x=1
We have e=1+1+1|2–+1|3–+1|4–+...; and by putting x=−1 in the series for ex e−1=1−1+1|2–−1|3–+1|4–−... ∴e+e−1=2(1+1|2–+1|4–+1|6–+...); hence the sum of the series is 12(e+e−1).