1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Types of Fractions
Find the sum ...
Question
Find the sum of the infinite series
1
+
(
1
+
a
)
b
+
(
1
+
a
+
a
2
)
b
2
+
(
1
+
a
+
a
2
+
a
3
)
b
3
+
.
.
.
.
b
and a being proper fractions.
Open in App
Solution
1
+
(
1
+
a
)
b
+
(
1
+
a
+
a
2
)
b
2
+
(
1
+
a
+
a
2
+
a
3
)
b
3
+
.
.
.
=
(
1
+
b
+
b
2
+
b
3
+
.
.
.
)
+
(
b
+
b
2
+
b
3
+
.
.
.
)
a
+
(
b
2
+
b
3
+
b
4
.
.
.
)
a
2
+
.
.
.
=
(
1
+
b
+
b
2
+
b
3
+
.
.
.
)
+
(
1
+
b
+
b
2
+
b
3
+
.
.
.
)
a
b
+
(
1
+
b
+
b
2
+
b
3
+
.
.
.
)
a
2
b
2
+
.
.
.
=
(
1
+
b
+
b
2
+
b
3
+
.
.
.
)
(
1
+
a
b
+
a
2
b
2
+
.
.
.
)
=
1
1
−
b
×
1
1
−
a
b
=
1
(
1
−
b
)
(
1
−
a
b
)
Suggest Corrections
0
Similar questions
Q.
If
|
a
|
<
1
,
|
b
|
<
1
then the sum of the series
1
+
(
1
+
a
)
b
+
(
1
+
a
+
a
2
)
b
2
+
(
1
+
a
+
a
2
+
a
3
)
b
3
+
………… to infinite terms is
Q.
If
|
a
|
<
1
&
|
b
|
<
1
, then the sum of the series
1
+
(
1
+
a
)
b
+
(
1
+
a
+
a
2
)
b
2
+
(
1
+
a
+
a
2
+
a
3
)
b
3
+
.
.
.
.
is
Q.
Find the sum of the infinite series
1
+
(
1
+
b
)
r
+
(
1
+
b
+
b
2
)
r
2
+
(
1
+
b
+
b
2
+
b
3
)
r
3
+
.
.
.
.
,
r
and
b
being proper fractions.
Q.
If
|
a
|
<
1
and
|
b
|
<
1
, then the sum of the series
1
+
(
1
+
a
)
b
+
(
1
+
a
+
a
2
)
b
2
+
(
1
+
a
+
a
2
+
a
3
)
b
3
+
⋯
is
Q.
If
|
a
|
<
1
a
n
d
|
b
|
<
1
, then the sum fo the series
1
+
(
1
+
a
)
b
+
(
1
+
a
+
a
2
)
b
2
+
(
1
+
a
+
a
2
+
a
3
)
b
3
+
.
.
.
i
s