We have,
(x2+x−2)(x2+x−3)=12
Let, (x2+x−2)=y
Then,
y(y−1)=12
y2−y=12
y2−y−12=0
y2−(4−3)y−12=0
y2−4y+3y−12=0
y(y−4)+3(y−4)=0
(y−4)(y+3)=0
If,y−4=0 then,y=4
If,y+3=0 then,y=−3
Put the value of y=(x2+x−2)
(x2+x−2)=4
x2+x−6=0
x2+(3−2)x−6=0
x2+3x−2x−6=0
x(x+3)−2(x+3)=0
(x+3)(x−2)=0
x=2,−3
If, y=−3
x2+x−2=−3
x2+x−1=0
Then, sum of non real values=−1
Hence, this is the answer.