Find the sum of the possible values of θϵ(0,π) such that sin(θ)+sin(4θ)+sin(7θ)=0 are
55π18
We have
sin(θ)+sin(4θ)+sin(7θ)=0
⇒2sin(4θ)cos(3θ)+sin(4θ)=0 [Using sinC+sinD=2sinC+D2cosC−D2]
⇒sin(4θ)(2cos(3θ)+1)=0
⇒sin(4θ)=0 or cos(3θ)=−12=cos(2π3)
⇒θ=π4, π2, 3π4 or 3θ=2π3, 2π±2π3
⇒θ=2π9,π4,4π9,π2,3π4,8π9
⇒ Sum =2π9+π4+4π9+π2+3π4+8π9
=8π+9π+16π+18π+27π+32π36=110π36=55π18