Find the sum of the sequence 0.4+0.44+0.444+... up to n terms.
Finding the sum of 0.4+0.44+0.444+...
Let,
S=0.4+0.44+0.444+...nterms⇒S=40.1+0.11+0.111+...nterms
Multiplying and dividing by 9, we get,
⇒S=40.1+0.11+0.111+...nterms⇒S=49(0.9+0.99+0.999+...nterms)⇒S=491-0.1+1-0.01+1-0.001+...nterms⇒S=491+1+1+...nterms-0.1+0.01+0.001+...+0.1n⇒S=49n-0.11-0.1n1-0.1⇒S=49n-1-110n9⇒S=499n-1+110n
Therefore, the sum of 0.4+0.44+0.444+... up to n terms. is 499n-1+110n
Find the sum to n terms of the sequences 8, 88, 888, 8888 ....