Given : sequence 7,77,777,7777,... upto n terms
Here, 777=11
and 77777=10.09
∵ Common ratio is not same.
∴ The given sequence is not G.P
We need to find sum =7+77+777+7777+⋯ upto n terms
=7(1+11+111+⋯ upto n terms)
Multiplying & dividing by 9
=79[9(1+11+111+... upto n terms)]
=79[9+99+999+9999+... upto n terms]
=79[(10−1)+(100−1)+(1000−1)+... upto n terms]
=79[(10+100+1000+...n terms)−(1+1+1+...upto n terms]
Sum=79[(10+100+1000+... terms)−n×1]⋯(i)
Now, 10+100+1000+...n terms is a G.P
Here, a=10 and r=10>1
We know,
sum of n terms of G.P., =Sn=a(rn−1)r−1;r>1
Sn=10(10n−1)10−1
⇒Sn=10(10n−1)9
Now substituting this value in (i), we get
Sum =79[10(10n−1)9−n]