Find the sum of the series 0.6 + 0.66 + 0.666 + ... .
Or
The product of the three numbers in GP is 216. If 2, 8 and 6 be added to them, then the results are in Al, find the numbers.
We have, 0.6 + 0.66 + 0.666 + . . . upto n terms
=6×0.1+6×0.111+6×0.111+⋯ upto n terms
= 6[0.1 + 0.11 + 0.111 + . . . upto n terms]
=69 [0.9 + 0.99 + 0.999 + upto n terms]
[multiplying numerator and denominator by 9]
=23[910+99100+9991000+⋯upto n terms]
=23[(1−110)+(1−1100)+(1−1100)+⋯upto n terms]
=23[(1+1+1+⋯n terms)−(110+1102+1103+⋯n terms)]
=23[n−110{1−(110)n1−110}]
[∵ sum of GP=a(1−rn)(1−r),|r|<1]
=23[n−110{1−(110)n910}]
=23[n−19{1−(110)n}]=23 n−227 (1−10−n)
Let the numbers in GP be a, ar and ar2.
It is given that, the product if these numbers is 216.
∴ a. ar. ar2=216
⇒ a3r3=216⇒ar=6 [taking cube root]
⇒ a=6r . . .(i)
It is also given that a + 2, ar + 8 and ar2 + 6 are in AP.
∴ 2(ar+8)=a+2+ar2+6
⇒ 2ar+16=a+ar2+8
⇒ ar2−2ar+a−8=0 . . . (ii)
Putting a=6r in Eq. (ii), we get
6r(r2)−2×6r×r+6r−8=0
⇒ 6r−12+6r−8=0
⇒ 6r2−12r+6−8r=0
⇒ 6r2−20r+6=0
⇒ 3r2−10r+3=0 [dividing by 2]
⇒ (3r−1)(r−3)=0 ⇒ r=13,3
When r = 3, a=63=2
and when r=13, a=613=18
Hence, the numbers are 2, 6, 18 or 18, 6, 2.