1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Summation by Sigma Method
Find the sum ...
Question
Find the sum of the series
1
2
+
(
1
2
+
2
2
)
+
(
1
2
+
2
2
+
3
2
)
+
.
.
.
.
.
Open in App
Solution
(
1
2
)
+
(
1
2
+
2
2
)
.
.
.
.
.
+
(
1
2
+
2
2
.
.
.
.
.
.
.
.
.
n
2
)
We know that
n
∑
i
=
1
i
=
n
(
n
+
1
)
2
n
∑
i
=
1
i
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
n
∑
i
=
1
i
3
=
n
2
(
n
+
1
)
2
4
(
1
2
)
+
(
1
2
+
2
2
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(
1
2
+
2
2
.
.
.
.
.
.
.
.
.
.
.
.
n
2
)
=
n
∑
i
=
1
(
1
2
+
2
2
.
.
.
.
.
.
.
.
.
i
2
)
=
n
∑
i
=
1
i
∑
i
=
1
i
2
=
n
∑
i
=
1
i
(
i
+
1
)
(
2
i
+
1
)
6
=
n
∑
i
=
1
2
i
3
+
3
i
2
+
i
6
=
1
3
n
∑
i
=
1
i
3
+
1
2
n
∑
i
=
1
i
2
+
1
6
n
∑
i
=
1
i
=
1
3
[
n
2
(
n
+
1
)
2
4
]
+
1
2
[
n
(
n
+
1
)
(
2
n
+
1
)
6
]
+
1
6
[
n
(
n
+
1
)
2
]
⇒
n
(
n
+
1
)
[
n
(
n
+
1
)
+
(
2
n
+
1
)
+
1
]
12
=
n
(
n
+
1
)
(
n
2
+
3
n
+
2
)
12
=
n
(
n
+
1
)
2
(
n
+
2
)
12
Suggest Corrections
0
Similar questions
Q.
The sum of the series
1
+
1
2
+
2
2
2
!
+
1
2
+
2
2
+
3
3
3
!
+
1
2
+
2
2
+
3
2
+
4
2
4
!
+
.
.
.
.
.
is
Q.
Find the sum to
n
terms of the series 1
2
+ (1
2
+ 2
2
) + (1
2
+ 2
2
+ 3
2
) + …