The correct option is
D None of these
Given series:
1.3+2.32+3.33+.........+100.3100
Solution:
Let,
Sn=1.3+2.32+3.33+...........+100.3100 .............(i)
3.Sn=1.32+2.33+.............+99.3100+100.3101 ..............(ii)
Subtracting eqn. (i) from (ii), we get
−2.Sn=1.3+32+33+34+............+3100−100.3101
or. −2.Sn=3(3100−1)(3−1)−100.3101
or, Sn=50×3101−3(3100−1)4
or, Sn=50×3101−0.25×3101+0.75
or, Sn=49.75×3101+0.75
Hence, D is the correct option.