Find the sum of the series 1·n+2(n-1)+3(n-2)+...+(n-1)2+n·1
Step 1: Given
Let rth term be Tr
Tr=r[n-(r-1)]=rn-r2-r
Step 2: Sum Tr by sigma method
Let Sn be the sum of the series up to n terms
⇒Sn=∑r=1nTr⇒Sn=∑r=1n(rn-r2-r)⇒Sn=n∑r-r=1n∑r2r=1n-∑rr=1n⇒Sn=nn(n+1)2-n(n+1)(2n+1)6-n(n+1)2∵∑k=1nk=kk+12,∑k=1nk2=kk+12k+16⇒Sn=nn+12n-2n+13-1⇒Sn=nn+123n-2n-1-33⇒Sn=nn+1n-46
Therefore, 1·n+2(n-1)+3(n-2)+...+(n-1)2+n·1=nn+1n-46