Genetal term of the series is in the form,
Tk=(2k+1)3−(2k)3,∀ k ∈ N
⇒ Tk=(2k+1−2k)[(2k+1)2+(2k)2+(2k+1)(2k)]
⇒ Tk=1×[4k2+1+4k+4k2+4k2+2k]
⇒ Tk=12k3+6k+1
Sn=n∑k=1Tk
Sn=n∑k=1(12k2+6k+1)
Sn=(12n∑k=1k2+6n∑k=1k+n∑k=1)
Sn=12×n(n+1)(2n+1)6+6×n(n+1)2+n
Sn=2n(n+1)(2n+1)+3n(n+1)+n
Sn=2n(2n2+3n+1)+3n3+3n+n
Sn=4n3+6n2+2n+3n2+4n
∴Sn=4n3+9n2+6n