Find the sum of the series 1+45+752+1053+... to n terms.
Open in App
Solution
Let S=1+45+752+1053+...+3n−25n−1 (i) (12)S=15+452+753+...+3n−55n−1+3n−25n (ii) (i)-(ii) ⇒45S=1+35+352+353+...+35n−1−3n−25n 45S=1+35(1−(15)n−1)1−15−3n−25n=1+34−34×15n−1−3n−25n=74−12n+74.5n ∴S=3516−(12n+7)16.5n−1