The correct option is D Sum of n terms Sn=n24(2n2+9n+13)
Here nth term Tn=13+23+33+.....+n31+3+5+.....+(2n−1)
=∑n3n2(1+2n−1)
=[n(n+12)]2n2
=14(n+1)2
=14(n2+2n+1)
=14n2+12n+14
∴ Sum of n terms,
Sn=∑Tn
=14∑n2+12∑n+14∑n
=14.n(n+)(2n+1)6+12.n(n+1)2+14.n
=124n(n+1)(2n+1)+14n(n+1)+14n
=n24{2n2+3n+1+6n+6+6}
Sn=n24(2n2+9n+13)