Find the sum of the series whose nth term is :
(i) 2n3+3n3−1
(ii) n3−3n
(iii) n(n+1)(n+4)
(iv)(2n−1)2
We have, Tn=2n3+3n2−1 Let Sn denote the sum of n terms of the series whose nth term is Tn. Then, Sn=∑nk−1Tk=∑nk−1(2k3+3k21)=∑nk−12k3+∑nk−13k2−∑nk−11=2∑nk−1k3+3∑nk−1k2−∑nk−11=2[n(n+1)2]2+3[n(n+1)(2n+1)6]−n=2[n(n+1)2]2+3[n(n+1)(2n+1)6]−n=24[n(n+1)]2+n(n+1)(2n+1)2−n=[n(n+1)]2+n(n+1)(2n+1)2−n=[n(n+1)]2+n(n+1)(2n+1)−2n2=n2[n3+n+2n2+2n2+3n−1]=n2[n(n+1)2+(n+1)(2n+1)−2]Here, Sn=n2(n3+4n2+4n)−1
(ii) We have, Tn=n3−3n Let Sn denote the sum of n terms of the series whose nth term is Tn Sn=∑nk−1Tk=∑nk−1(k3−3k)=∑nk−1k3−∑nk−13kSn=∑nk−1k3−∑nk−13k=[n(n+1)2]2−(31+32...+3n)=n2(n+1)24−3(3n−13−1)=n2(n+1)24−32(3n−1)Hence, Sn=[n(n+1)2]2−32(3n−1) (iii) We have, Tn=n(n+1)(n+4)=(n2+n)(n+4)=n3+5n2+4n Let Sn denote the sum of n terms of the series not in L.C.M. whose nth term is Tn. Then, Sn=∑nk−1Tk=∑nk−1(k3+5k2+4k)=∑nk−1k3+∑nk−15k2+∑nk−14k=∑nk−1k3+5∑nk−1k2+4∑nk−1k⇒Sn=∑nk−1k3+5∑nk−1k2+4∑nk−1k=[n(n+1)2]2+5[n(n+1)(2n+1)6]+4n(n+1)2=14[n(n+1)]2+5n(n+1)(2n+1)6+2n(n+1)=3[n(n+1)]2+10n(n+1)(2n+1)+24n(n+1)12=n(n+1)12[3n(n+1)+10(2n+1)+24]=n(n+1)12[3n2+3n+20n+10+24]=n(n+1)12[3n2+23n+34]Hence, Sn=n12(n+1)(3n2+23n+34) (iv) We have, Tn=(2n-1)2 =(2n)2+1−2×2n×1=4n2+1−4n=4n2−4n+1∴Tn=4n2−4n+1 Let Sn denote the sum of n terms of the series whose nth term is Tn. Then, Sn=∑nk−1Tk=∑nk−14k2−∑nk−14k+∑nk−11⇒Sn=4∑nk−1k2−4∑nk−1k+∑nk−11=4[n(n+1)(2n+1)6]−4n(n+1)2+n=23n(n+1)(2n+1)−2n(n+1)+n=23n(n+1)(2n+1)−2n2−2n+n=23n(n+1)(2n+1)−2n2−n=23(n+1)(2n+1)−n(2n+1)=2n(n+1)(2n+1)−3n(2n+1)3=n3(2n+1)[2(n+1)−3]=n3(2n+1)(2n+2−3)=n3(2n+1)(2n−1)Hence, Sn=n3(2n+1)(2n−1)