Find the sum of the squares of the first n natural numbers.
A. n2(n+1)6
B. n(n+1)(n−1)6
C. n(2n+1)6
D. n(n+1)(2n+1)6
The correct option is D.
n(n+1)(2n+1)6
Given series s = 12 + 22 + 32 + 42 +.................... +n2
We know,
n3 - (n−1)3 = 3n2 - 3n+1
(n−1)3 - (n−2)3 = 3(n−1)2 - 3(n−1) + 1
(n−2)3 - (n−3)3 = 3(n−2)2 - 3(n−2) + 1
Adding both LHS and RHS
n3=3∑ni=1n2−3∑ni=1n+n
n3=3∑ni=1n2−3(n)(n+1)2+n
n3=3∑ni=1n2−(3n2+3n)+2n2
n3=3∑ni=1n2−3n2−3n+2n2
n3=3∑ni=1n2−3n2+n2
∑ni=1n2=(2n3+3n2+n)6=n(2n2+3n+1)6
= n(n+1)(2n+1)6