Find the sum of the terms of the finite AP :
1, 3, 5, 7,…,199
10000
Given,a=1,d=2
an=l=199
a+(n−1)d=199
1+(n−1)2=199
⇒1+2n−2=199
⇒2n=200
n=100
Sum of n terms: Sn=n2(a+l)
So, sum of the terms of the given AP = S100=1002(1+199)
=10000