Find the sum of the terms of the G.P, a+ar+ar2+...∞, where a is the value of x for which the function 7−5x−1−52−x+2xloge25 has the greatest value and r is the limit, limx→0∫x0t2dt(x2tan(π+x)).
Open in App
Solution
Let f(x)=7+2xloge25−5x5−255x⇒f′(x)=4loge5−5x5ln5+25×5−xln5f′(x)=0⇒ln5{4−5x5+25×5−x}=0⇒52x−20×5x−1255x+1=0⇒(5x−25)(5x+5)=0⇒(5x−25)=0or(5x+5)=0 but (5x+5)=0 is not possible Hence (5x−25)=0 ⇒x=2 So for this value of x we will get the maximum. For clarification one can check that for this value of x f′′(x)<0 Hence a=2 Now we calculate the value of r. limx→0∫x0t2dtx2tan(π+x)=limx→0∫x0t2dtx2tan(π+x)=13limx→0x3x2tanx=13 Hence r=13 So the sum of infinite G.P is a1−r=2×32=3