The correct option is B 21
a.b.c=a.ar.ar2=216
⇒b=ar=6 ...(1)
and ab+bc+ac=a.ar+ar.ar2+a.ar2=126
⇒a2r+a2r3+a2r2=126
⇒a2r+a2r3=90 (∵ar=6)
⇒6a+36r=90
⇒a+6r=15 ...(2)
from equation (1) and (2), we get
6r+6r=15
⇒6r2−15r+6=0
⇒r=2 or 12
∴a,ar,ar2=3,6,12 or 12,6,3
∴a+b+c=21