Find the sum or difference of the following:
211+27
Consider
211+27=2×711×7+2×117×11=1477+2277=14+2277=3677
Hence, the sum of 211+27 is 3677
Compare the given fraction and replace '□'by an appropriate sign '<or>'
27□25
The sum of the series 23!+45!+67!+... to ∞ = ae. Find (a+3)2.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.