Let the A.P. be(a+d)+(a+2d)+....+(a+nd)
pn=Sum=n2[(a+d)+(a+d)]=n2[2a+(n+1)d]...(1)
Sn=(a+d)3+(a+2d)3+....+(a+nd)3
=na3+3a3d∑n+3ad2∑n2+d3∑n3
=na3+3a3d⋅n(n−1)2+3ad2⋅n(n+1)(2n+1)6+d3⋅n2(n+1)24
=n4[4a3+6ad2(n+1)+2ad2(n+1)(2n+1)+d3n(n+1)2]
12⋅n2[2a+(n+1)d][2a2+2ad(n+1)+d2n(n+1)]......(2)
=12Pn[2a2+2ad(n+1)+d2n(n+1)]by(1).....(3)
=Pn[a2+ad(n+1)+d2λ]
∴n(n+1)=Productoftwoconsecutivenumberiseven=2λ,say
By actual division (2) given Sn and (3) shows that Pn is a factor of Sn.