∑nr=0 n+rCr= nC0+ n+1C1+n+2C2+...n+nCn
⇒nCn+n+1Cn+n+2Cn+...2nCn
⇒ Coefficient of xn in [(1+x)n+(1+x)n+1+....+(1+x)2n]
⇒Coefficient of xn in (1+x)n[1−(1+x)n+1]1−(1+x)
⇒Coefficient of xn+1 in [(1+x)2n+1−(1+x)n]
⇒2n+1Cn+1
⇒∑nr=0 n+rCr=2n+1Cn+1
⇒ nC0+∑nr=1 n+rCr=2n+1Cn+1
⇒ 1+∑nr=1 n+rCr=2n+1Cn+1
Therefore, ⇒ ∑nr=1 n+rCr=2n+1Cn+1−1