Find the sum to n terms
1×2+2×3+3×4+4×5+……
The given series is 1×2+2×3+3×4+4×5+…… to n terms.
Let an be the nth term of the given series
∴an= [nth term of 1, 2, 3 ....] [nth term of 2, 3, 4, 5 .....]
=[1+(n−1)×1][2+(n−1)×1]
=n(n+1)=n2+n
∴Sn=∑nk=1ak=∑nk=1(k2+k)
=[12+1]+[22+2]+[32+3]+……+[n2+n]
=[12+22+32+……+n2]+[1+2+3+……+n]
=n(n+1)(2n+1)6+n(n+1)2
⇒n(n+1)2[2n+13+1]
=n(n+1)2×(2n+4)3
⇒n(n+1)(n+2)3