Find the sum to n terms
3×12+5×22+7×32+……
The given series is
3×12+5×22+7×32+……+ to n terms.
Let 'an' be the nth term of given series and 'Sn' be the sum of n terms.
∴an= [nth term of 3, 5, 7...] [nth term of 1, 2, 3, ...]2
=(2n+1)(n)2=2n3+n2
∴Sn=∑nk=1ak=∑nk=1(2k3+k2)
=(2.13+12)+(2.23+22)+(2.33+32)+……+(2.n3+n2)
=2(13+23+33+……+n3)+(12+22+32+……+n2)
=2[n(n+1)2]2+n(n+1)(2n+1)6
=2n(n+1)24+n(n+1)(2n+1)6
=n(n+1)24+n(n+1)(2n+1)6
=n(n+1)2[3(n2+n)+(2n+1)3]
=n(n+1)2[3n2+3n+2n+13]
=n(n+1)(3n2+3n+2n+1)6
=n(n+1)(3n2+5n+1)6