Let Sn denote the sum to n terms of the given sequence.
Then,
Sn=(x+1x)2+(x2+1x2)2+(x3+1x3)2+....+(xn+1xn)2
=(x2+1x2+2)+(x4+1x4+2)+(x6+1x6+2)+.....+(x2n+1x2n+2)
=(x2+x4+x6+.....+x2n)+(1x2+1x4+1x6+.....+1x2n)+(2+2+....+n)n times
=x2((x2)n−1x2−1)+1x2((1/x2)n−1(1/x2)−1)+2n
=x2(x2n−1x2−1)+1x2n(1−x2n1−x2)+2n
=x2(x2n−1x2−1)+1x2n(x2n−1x2−1)+2n
=(x2n−1x2−1)(x2+1x2n)+2n.