1,22+2,32+3,42+….
Tn⇒n(n+1)2 (General Term of this series)
=n(n2+1+2n)
Tn=n3+2n2+n
Sn=∑Tn=∑n3+∑2n2+∑n
=(n(n+1)2)2+2(n(n+1)(2n+1)6)+n(n+1)2
⇒n(n+1)2[n(n+1)22(2n+1)3+1]
Sn⇒n(n+1)2[3(n(n+1))+4(2n+1)+66)
Find the 10th term of the series 1.22+2.32+3.42+−−−−−−−nterms