S=1+2x+3x2+4x3+……. upto n terms
→S=1+2x+3x2+4x3+…….+nxn−1
xs=x+2x2+3x3+…….+nxn
S−xs=1+x+x2+x3+……xn−1−nxn
This is a G.P and SG.P=(1−xn1−x)
So, s−xs=(1−xn1−x)−nxn
S(1−x)=(1−xn1−x)−nxn
S⇒(1−xn)(1−x)2−nxn(1−x)
The sum of the series 1 + 2x + 3 x2 + 4 x3 + ..........upto n
terms is