Sumtonterms1×2×4+2×37+3×4×10+......
Gernalterms,ur=r(r+1)(r+3)=r(r2+4r+3)
4r=r3+4r2+3r
∴Sn=n∑r=14r=n∑r=1r3+4n∑r=1r2+3n∑r=1r
=[n(n+1)2]+46n(n+1)(2n+1)+32n(n+1)
=n(n+1)12[3n(n+1)+8(2n+1)+18]
=n(n+1)12[3n2+19n+26]
=n(n+1)12[3n2+13n+6n+26]
=n(n+1)12[n(3n+13)+2(3n+13)]
=112n(n+1)(n+2)(3n+13)
Hence this is the answer.